DRAFT May 2017

PPCPs (Pharmaceuticals and Personal Care Products): Carbamazepine

Carbamazepine is a pharmaceutical (anticonvulsant) that works by reducing abnormal electrical activity in the brain. It is used alone or in combination with other medications to control certain types of seizures in patients with epilepsy. Carbamazepine is also used to treat mental illnesses, depression, posttraumatic stress disorder, drug and alcohol withdrawal, restless legs syndrome, pain syndromes, and chorea which affects children (Porter and Meldrum 2012).

From articles collected from the ECOTOX database in April 2016, there are 75 scientific articles related to effects of carbamazepine. The most common effects from carbamazepine are mortality and inhibited growth. The most sensitive taxa according to the literature are algae and freshwater plants.

Reported effects of carbamazepine from toxicity literature in the ECOTOX database (as of April 2016)

Aquatic Life	Reported Most	Reported Common	Reported Toxicity Value (LOEC, NOEC, EC50, LC50)
	Common effect(s)	study endpoints	
Clams/	Toxicity, Stressors	Bioindicator,	IC50 (mg/L):
Mussels		bioaccumulation,	24 h: 53.2
		toxic effects	48h: 147.4
			72h: 235.8
			96h: 295.6
			(Tsiaka 2013)
Fish	Effected growth,	Physiological	72h (mg/L):
	altered gene	effects, Chronic	NOEC: 30.6
	expression,	exposure	EC50: 86.5
	Fecundity decline	.,,,,,,,,,	LC50: >245
			(Van der Brandhot 2010)
			LC50: >500 uM, EC50: 222 uM (Weigt 2011)
Crab/Shrimp	Toxicity, Inhibit	Behavior responses,	LOEC: 0.010, LC50: 7.14×10-7, EC50: 7–165 (ug/L)
	Growth		(De Lange 2006)
African Clawed/Marsh	Toxicity	Toxicity, hazard	EC50 (Alone): 65.70 mg/L / EC50 (Mixture): 24h: 15.13, 48h:
Frog		assessment	12.47, 72h: 11.70, 96h: 10.99 (mg/L) (Melvin 2014)
Algae/	Inhibit growth	Regeneration,	EC50 : >81,000 μg·L–1 (Lawrence 2005)
Freshwater Plants		Uptake	
Water Flea	Immobilization, No	Chronic	D. Magna: (Immobilization):
	chronic effects		EC50:
	reported		24h: 475 uM
			48h: 414 uM
		/	(Jos 2003)
Aquatic	Survival risk and	Chronic exposure,	LC50 (redworm): >1000 (ug/cm3) (McKelvie 2011)
macroinvertebrates	inhibited growth at	Acute toxicity,	From 20-23 degrees Celsius(bloodworm):
	levels above	Metabolic responses	NOEC: 0.033-0.14,
	environmental		LOEC: 0.22-0.234,
	relevant conditions		EC50: 0.16-0.28 (mg/kg) (Oetken 2005)

Porter, R.J. and B.S. Meldrum. (2012). Anti-seizure drugs *in* B.G. Katzung, S.B. Masters, A.J. Trevor, 12 Eds. Basic and clinical pharmacology. McGraw Hill. New York, NY, pp. 404-410.